31. Okt 2022   Bildung & Uni Business Tech

Ultrakalte Mini-Tornados der Quantenwelt an der Uni Innsbruck

Wirbel in der Quantenwelt (Dichteverteilung) ©Ella Maru Studio

Quantengase. Ein Team von Quantenphysikern unter Mitwirkung der Uni Innsbruck hat eine neue Methode entwickelt, mit der Wirbel in dipolaren Quantengasen beobachtet werden können.

Ein Team von Quantenphysikern um die dreifache ERC-Preisträgerin Francesca Ferlaino hat eine neue Methode entwickelt, mit der Wirbel in dipolaren Quantengasen beobachtet werden können. Diese Quanten-Wirbel gelten als eindeutiger Hinweis für Suprafluidität, das reibungsfreie Strömen eines Quantengases, und wurden nun erstmals an der Universität Innsbruck in dipolaren Gasen experimentell nachgewiesen, so die Uni.

Im Großen ein Tornado, im Kleinen in der Quantenwelt

Wirbel sind in der Natur allgegenwärtig: Durch Rühren lassen sich Wasserstrudel erzeugen. Wird die Atmosphäre aufgewühlt, können gewaltige Tornados entstehen. So verhält es sich auch in der Quantenwelt, nur dass dort viele identische Wirbel gleichzeitig entstehen, heißt es – der Wirbel ist „quantisiert“.

In vielen Quantengasen konnten solche quantisierten Wirbel bereits nachgewiesen werden. „Das ist deshalb interessant, weil solche Wirbel ein klarer Hinweis für das reibungsfreie Strömen eines Quantengases – die sogenannte Suprafluidität – sind“, sagt Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.

Neue Methode erzeugt Quantenwirbel

Ferlaino forscht mit ihrem Team an Quantengasen aus stark magnetischen Elementen. Für solche dipolaren Quantengase, in denen die Atome stark wechselwirken, konnten die Quanten-Wirbel bisher noch nicht nachgewiesen werden. Die Wissenschaftler haben nun eine neue Methode entwickelt: „Wir nutzen die Richtungsabhängigkeit unseres Quantengases aus Dysprosium, dessen Atome sich wie viele kleine Magneten verhalten, um das Gas umzurühren“, erklärt Manfred Mark aus dem Team von Francesca Ferlaino.

Dazu legen die Wissenschaftler laut den Angaben ein Magnetfeld so an ihr Quantengas an, dass dieses zunächst runde, pfannkuchenartig geformte Gas aufgrund von Magnetostriktion elliptisch verformt wird. Diese ebenso einfache wie wirkungsvolle Idee gehe auf einen theoretischen Vorschlag zurück, den ein Theorieteam der Universität Newcastle unter der Leitung von Nick Parker, dem auch Thomas Bland, der Mitautor der aktuellen Arbeit, angehörte, vor einigen Jahren gemacht hatte.

„Indem wir das Magnetfeld drehen, können wir das Quantengas rotieren lassen“, erklärt Lauritz Klaus, Erstautor der Arbeit. „Wenn es sich schnell genug dreht, dann bilden sich im Quantengas kleine Wirbel aus. So versucht das Gas, den Drehimpuls auszugleichen.“ Bei ausreichend hoher Rotationsgeschwindigkeit bilden sich entlang des Magnetfelds auffällige Streifen mit Wirbeln. Diese sind ein besonderes Charakteristikum dipolarer Quantengase und wurden nun an der Universität Innsbruck zum ersten Mal beobachtet.

Die Illustration zeigt laut Uni Innsbruck die Dichteverteilung eines rotierenden dipolaren Bose-Einstein-Kondensats mit quantisierten Wirbeln auf Basis von Simulationsdaten aus der Arbeit. Die Wirbel, die an den Dichteeinbrüchen zu erkennen sind, ordnen sich aufgrund der anisotropen, weitreichenden Wechselwirkung zwischen den Atomen in Streifen an (© Ella Maru Studio).

Nächste Ziel Suprasolidität

Die nun in der Fachzeitschrift Nature Physics präsentierte neue Methode soll in Zukunft zur Untersuchung der Suprafluidität in suprasoliden Zuständen eingesetzt werden, in denen Quantenmaterie gleichzeitig fest und flüssig ist. „Es ist immer noch eine große offene Frage, inwieweit die neu entdeckten suprasoliden Zustände tatsächlich supraflüssig sind, und diese Frage ist heute noch sehr wenig erforscht.“ Die Arbeit („Observation of vortices and vortex stripes in a dipolar condensate“, Lauritz Klaus, Thomas Bland, Elena Poli, Claudia Politi, Giacomo Lamporesi, Eva Casotti, Russell N. Bisset, Manfred J. Mark, and Francesca Ferlaino. Nature Physics 2022) entstand in Zusammenarbeit mit Giacomo Lamporesi von der Universität Trient und dem Theoretiker Russell Bisset von der Universität Innsbruck und wurde unter anderem vom Europäischen Forschungsrat ERC, dem österreichischen Wissenschaftsfonds FWF und der Österreichischen Akademie der Wissenschaften ÖAW finanziell unterstützt.

    Weitere Meldungen:

  1. Jetzt kommt die nachhaltige Quanten-Forschung
  2. TU Graz startet neues Stipendienprogramm
  3. Ein Drittel der Studierenden beendet das Studium nie
  4. Unis geschlossen: LexisNexis, Linde und Manz ermöglichen Home Office