02. Nov 2022   Bildung & Uni Tech

Nanolöcher werden sichtbar bei der TU Graz

Anton Tamtögl ©Lunghammer / TU Graz

Nanotechnologie. Wissenschafter der TU Graz nahmen Bornitrid unter die Lupe, ein bedeutendes Material der Mikroelektronik und Nanotechnologie. Dabei machten sie eine unerwartete Entdeckung.

Atomar dünne 2D-Materialien für Anwendungen in der Mikroelektronik oder Nanotechnologie werden gezüchtet, indem Gas auf einer heißen Metalloberfläche zersetzt wird. Diesen Wachstumsvorgang zu beobachten gestaltet sich aufgrund der hohen Temperaturen und der schnellen Umwandlung des Gases allerdings äußerst schwierig, heißt es dazu einleitend an der TU Graz.

Forschende der TU Graz konnten nun gemeinsam mit Kolleg*innen der University of Surrey erstmals das Wachstum des Materials Hexagonales Bornitride (h-BN) beobachten und dokumentieren. Hexagonales Bornitrid wird vor allem in der Mikroelektronik und Nanotechnologie, der Photonik- und Leistungselektronik, in Brennstoffzellen und als Dielektrikum für Feldeffekttransistoren eingesetzt.

Regelmäßig angeordnete Nanoporen

Die Gruppe rund um Anton Tamtögl vom Institut für Experimentalphysik der TU Graz beobachtete das Wachstum mittels Heliumspektroskopie – einer höchst empfindlichen Analysetechnik zur Untersuchung von Materialoberflächen und darauf stattfindenden Reaktionen mit einer bisher unerreichten Detailgenauigkeit und Zeitauflösung. Selbst schnelle Bewegungen von Atomen und Molekülen auf Kristalloberflächen – einschließlich Quantenbewegungen von Protonen und ballistische Diffusion von Molekülen – können so untersucht werden, heißt es dazu.

Bei ihrem Experiment mit h-BN kamen sie zu dem unerwarteten Ergebnis: Hexagonales Bornitride besitzt eine wabenförmige 2D-Kristallstruktur, die mit der Struktur von Graphen, also einer einatomigen Lage von Kohlenstoffen, identisch ist. Statt der Kohlenstoffatome hat das Sechseck aber abwechselnde Bor- und Stickstoffatome.

Eine Struktur aus Nanoporen wird erstmals sichtbar

Die Wissenschafter beobachteten beim Wachstumsprozess, dass die geordnete Struktur von h-BN aus regelmäßig angeordneten Löchern, sogenannten Nanoporen entsteht. Dies ist das erste Mal, dass diese offene Struktur identifiziert und ihre Rolle während des Wachstums von h-BN beobachtet wurde, heißt es weiter.

„Wir waren erstaunt, dass die Messungen anstelle des erwarteten Beugungsmusters von hexagonalem Bornitrid eine ganz andere Struktur zeigten, die wir nun einer neuartigen Phase von h-BN zuordnen“, erklärt Anton Tamtögl, der das Experiment leitete. „Eine neue Phase für ein so bekanntes und technologisch wichtiges 2D-Material zu finden, ist wie die Entdeckung einer völlig neuen Schmetterlingsart im eigenen Garten“, ergänzt Adrian Ruckhofer, der die Experimente im Rahmen seiner Doktorarbeit durchführt.

Experiment in Kombi mit quantenmechnischen Berechnungen

Weil sie von ihren experimentellen Ergebnissen so überrascht waren, suchten die Forschenden der TU Graz die Hilfe der Theorie und wollten bestätigen, dass ihre Beobachtungen überhaupt rechnerisch möglich waren. Marco Sacchi von der University of Surrey führte dann die quantenchemischen Berechnungen mit dem nationalen ARCHER2-Supercomputer durch und bestätigte, dass die beobachtete Struktur auch mathematisch die eindeutig bevorzugte ist.

„Wir haben bewiesen, dass die Kombination von Experimenten und quantenchemischen Berechnungen neue und wichtige Erkenntnisse über das Wachstum von 2D-Materialien liefern kann“, wird Marco Sacchi in einer Aussendung der TU Graz zitiert: „Und wir planen bereits, unsere Methode für die Untersuchung des Wachstums anderer 2D-Materialien einzusetzen“.

    Weitere Meldungen:

  1. Freshfields und Hogan Lovells helfen bei Glasfaser-Ausbau
  2. Traunfellner leitet Sales beim IT-Unternehmen NAVAX
  3. Deloitte ortet Potenzial im eSport-Bereich
  4. Webinare zu Energie-Infrastruktur, Digital-Plattformen